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A b s i r e ~ i .  kpresentaiions oi noniinear non-bijective canonicai iransiomsiions in 
quantum mechania are discused. Due to the non-bijectivity the classical phase 
space has a Riemann sheet structure, and a family of partial isometrier translating 
this structure into quantum mechanics is constructed If a unitary representation 
is required, a new variable-the ambiguity spin-has to be introduced in order to 
recover bijectivity following the approach of Moshinsky and co-wor*ers. This new 
degree of freedom is analysed in terms of multiboson operators. The application of 
this formalism to some non-classical states of light is discussed. 

1. Introduction 

It is well known that canonical transformations are a powerful and elegant technique 
for solving problems in classical mechanics [l]. This subject was also important for the 
development of the foundations of quantum-mechanics (21, but this interest lessened 
after the objective was achieved. 

It seems to be generally accepted that canonical transformations are represented 
in quantum mechanics by unitary operators. For the case of linear canonical trans- 
formations, a celebrated theorem of Von Neumann [3] is usually invoked. This group 
of linear canonical transformations has been extensively discussed in the literature [4] 
and has a host of applications in many branches of physics, going from problems in 
nuclear clustering theory [5], groups of accidental degeneracies etc [6], to the theory 
of superconductivity through the famous Bogoliubov transformation [7]. In quantum 
optics, perhaps one of the most relevant is the characterization of squeezed states as 
generalized coherent states for this group [E]. We wish to stress that the Von Neumann 
theorem holds only when the system has finite degrees of freedom. In the case of an 
infinite number of degrees of freedom such an operator may not exist, since physically 
equivalent observables, i.e. realizing the same algebra of commutation relations, are 
not necessarily unitarily equivalent [9]. 

For more complicated situations one is usually referred to Dirac's classic book [lo]. 
However, the programme outlined by Dirac works only under the restriction that the 
transformation relate operators with the same spectrum. When it is not the case, as 
occurs frequently, the procedure IS meaningless. 

Moshinsky and co-workers [ll] have discussed extensively what happens when one 
considers canonical transformations in which this restriction does not hold. In partic- 
ular they have fully analysed nonlinear and non-bijective canonical transformations. 
In this paper we are interested in the specific example of a transformation that relates 
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a harmonic oscillator of unit frequency with another of integer frequency K .  This ex- 
ample may seem trivial, but it contains all the basic difficulties of the problem. The 
transformation becomes non-bijective, a fact intimately related with the difference 
between the spectra of both Hamiltonians, and no such unitary operator can exist. 

If we require a unitary representation, i t  seems necessary to introduce a new 
variablefirst  called by Plebariski ambiguity spin, and whose applications to the 
representations of non-bijective canonical transformations have been worked out by 
Moshinsky and cc-workers [12]-that restore bijectivity and at the same time equalize 
the spectra. 

Up to now no clear physical interpretation of this ambiguity spin has been made. 
In this work we attempt to reinterpret this variable in connection with the multipho- 
ton operators [13] recently introduced to produce non-Gaussian squeezing. Among the 
quantum properties of the squeezed states perhaps the most important are the reduc- 
tion of the uncertainty in one quadrature component of the field helow the vacuum, 
and the presence in some cases of sub-Poissonian statistics. 

The schemes t o  generate squeezed states are essentially based on nonlinear optical 
effects where the fields interact with matter characterized, in general, by a kth-order 
susceptibility, which corresponds to produce k-photon states, and multiphoton pro- 
cesses are involved in the interaction Hamiltonian. 

The generalization of k-photon squeezing for k > 2 runs into difficulties that  can be 
overcome with the introduction of these multiphoton operators. A clear understanding 
of the problem can provide an interesting tool for handling many problems occurring 
in connection with some non-classical properties of special photon states. 

A Luis and L L SBnchet-Soto 

2. Representations of non-bijective canonical t ransformations 

In this section we intend to summarize the main concepts introduced by Moshinsky 
and co-workers [12] in connection with the representations in quantum mechanics of 
non-bijective canonical transformations. We try to introduce these concepts in such 
a way that they show their connection with the multihoson formalism we shall deal 
with in section 3. 

Focusing on the case of the transformation relating an oscillator of unit frequency 
with another of frequency K ,  with K an integer, its implicit definition can be expressed 
as ~ 4 1  

i ( P z  + q2) = $ K ( P z  + ?) 

n tan-' = tan-' E - (2.1) 

P P 
where ( q , p )  and (as)  stand for the old and new coordinates in phase space. This 
transformation is essentially a dilatation in the action-angle phase space. A sector of 
angle 2 n / ~  in the ( q , p )  plane is mapped on the full plane ( V , j j ) ,  thus i t  is non-bijective 
and to retrieve bijectivity the phase plane (7,j.j) must have K sheets connected along 
the cut in the positive real axis. 

Another approach that is easily translated into quantum mechmics begins by 
considering the set of points in the original phase space mapped on the mme point of 
the new plane. These points ( q , , , p , )  are 

q,, = qcos(%q/~)  - p s i n ( 2 n q f ~ )  

p,, = q s i n ( 2 a q f ~ )  +pcoS(2aq/~)  
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where q =  O , l , . .  .,n - 1. 
As we can see these points are connected by a group of linear canonical trausfor- 

mations isomorphic t o  the cyclic group C,. This group, intimately related with the 
non-bijectivity, is called the ambiguity group. We can retain the idea of a single sheet, 
but characterizing the functions in the ( q , p )  plane by components invariant under 
the ambiguity group. Since each component maps unambiguously, functions on the 
(q,p) plane must be vector functions. The index labelling these components is called 
ambiguity spin. 

In quantum mechanics a representation of a canonical transformation is a unitary 
operator U that  translates the classical relations between observables in the original 
and new phase spaces into relations between operators in the corresponding Hilbert 
spaces 'H and z. For the transformation (2.1), the relation between operators we want 
to establish is 

(2.3) 

The first equality is the relation between the two Hamiltonians described as usual 
in terms of the creation and annihilation operators. The second one is the closest 
translation into quantum mechanics of the classical phase relation in terms of the 
phase operator of Susskind and Glogower [15], defined as E = 1/- a .  

If the spectrum of both Hamiltonians were the same, we could easily construct the 
unitary operator of the transformation following Dirac's prescription [lo]. However in 
our case ata and K ~ Z  do not have the same spectrum and no such unitary operator 
Cl exists. 

Instead of a unitary operator we can try to give isometric mappings restricted to 
certain subspaces of 'H using the concept of ambiguity group. 

In the quantum case, the linear canonical transformations V ( q )  in 'H that leave 
invariant ata and E" in (2.3) are 

(2.4) 

that is, a representation of the cyclic group C, defined as well in the classical case by 

Thus, in order to find subspaces that  could be related isometrically with E satis- 
fying (2.3) we must restrict to the subspaces of 'H where the action of the ambiguity 
group becomes a constant phase factor, i.e. subspaces carrying the unitary represen- 
tations of the group. These subspaces 'HA are spanned by I K ~ +  A) ,  n = 0,. . . ,cui, and 
we have that 'H splits as 

(2.2). 

Now the family of partial isometries U, mapping isometrically the subspaces HA 
verifying (2.3) are easily constructed following Dirac's programme, and we get onto 

U, = C I n )  (nn + X I  A = o,.. ., K - 1 
" 
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where In) and In) are the number states in both Hilbert spaces. 
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In the coordinate representation the matrix elements of U, take the form 

m 

(VI u A h )  = E@"*(@) @6n+A(4') 
" = O  

where @(q) are the normalized solutions of the Schrodinger equation for an oscillator 
of unit mass and frequency. This form is the same obtained by Kramer el  a1 [12] with 
a different approach. 

This family of partial isometries seems the closest relation between our canonical 
transformation and unitary operators in quantum mechanics. 

If now we require the transformation to  be unitary i t  has  been proposed to enlarge 
the final Hilbert space to recover bijectivity. The simplest way to  do this is t o  consider 
as the find space not % but  % 8 V ,  where V is some finite-dimensional space that 
translates into quantum mechanics the multicomponent structure of the functions 
in phase space, and that might be called ambiguity spin space. As pointed out by 
Plebahski [16] this corresponds to extending the family of semi-unitary operators U, 
to an isometry. The role played by this space V is to  allow each HA to  have a different 
image and provide a variable that equals both spectra. Taking now E @  V as the final 
space we can construct a truly unitary operator U : H + % 8 v 

m i o  recover ihe correspondence beiween canonicai iransformaiions and uniiary op- 
erators, i t  has been necessary to  add a new degree of freedom that ,  until now, has not 
received a clear physical interpretation. Note that the final space and the original one 
are clearly discriminated, even if in principle 'H = %. 

In the next section we show that  with the formalism of multiboson operators we 
can identify E 8 V with our physical space H and, in this way, give an interpretation 
of the ambiguity spin. 

3. Multiphoton o p e r a t o r s  

In this section we try to  relate the non-bijective canonical transformation problem 
with ?he f o r r x ! h  of ?he mu!?ibnxn cperatcre. We h!! ose ?he szme notation .sed 
before for what may be considered as a different question. We think that  the final 
result justifies this choice. 

As is well known, the abstract commutation relations 

[a, at] = I (3.1) 
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have the usual irreducible representation in the familiar Fock space X with the action 
of the operators defined as 

.In) = &In - 1) atln) = & T i i n  + 1) (3.2) 

with al0) = 0, In) being a complete orthonormal basis of X. Any other irreducible rep- 
resentation of (3.1) by closed densely defined operators in a Hilbert space is unitarily 
equivalent t o  it [ l i ] .  

In this Fock space of the single Bose operator a, we can define the generalized 
Bose operators or multiboson operators a(,) as 

a(,)Inn + A) = &ln(n - I) + A) 

a+ Inn + A) = & T i l n ( n  + 1) + A )  

where X = 0,. , . , n - 1, with commutation relation 

(.! 
(3.3) 

b(*)'a[s)l = I. (3.4) 

These equations lead us to interpret a ( c )  as an annihilation operator of n bosons 
simu!t,a_neous!y. However, it. should he not,ed t,hat. while a,.% = a, n, f ax for n 2 2. 

Perhaps the clearest expression of a(,) in terms of a and at can be obtained from 
the relation 

1'1 ( 6 )  

E" = E(E)  

where E(=) is defined as 

(3.5) 

Associated with these operators we have the corresponding canonical variables 
(q(=),p(=)) defined as usual in terms of a(G)  and a!.,. 

With these definitions 31 splits naturally into a direct sum of subspaces 'HA invari- 
ant under the action of the multiboson operators. These 31, are defined in the same 
way as in the previous section, and now ( a ( r ) , X A )  are irreducible representations of 
(3.1). 

This decomposition of X shows that the canonical transformation problem and 
these operators must be related. In order to get the connection between the two 
formalisms we can express the previous direct sum as a tensor product of Hilbert 
spaces, one isomorphic to any of the summands and another with dimension the 
length of the sum. Calling 77 and V to these spaces we have the following isomorphism 
X SJ % @  V .  If we take In) as a complete orthonormal basis in % and leA) as a basis 
in V, this isomorphism can be realized through the unitary operator [I 

With ir defined by 
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the pair (ii,g) is an irreducible representation of (3.1). 
I t  is clear that this unitary operator and (2.8) are the same transformation and 

this is the reason we use the same notation 77 here for the quotient space and for the 
new Hilbert space in section 2. 

We can say after this identification that it is not necessary to enlarge the final 
Hilbert space introducing spurious variables in order to have the unitary transforma- 
tion (2.8), from the canonical transformation (2.1). The invariance of the Poisson 
brackets does not guarantee that  the new variables p and f i  are a complete set of 
coordinates in phase space. 

In quantum mechanics this fact is reflected, as the previous isomorphism shows, in 
that we cannot obtain from the (@,p) operators, or in the same way from (q(=),p(&)), 
a complete set of commuting ohservables. In fact we can find operators that commute 
with both pairs and are not constants. 

We can give another approach to this identification. If we express the Hamiltonian 
of unit frequency in terms of multiboson operators we have 

A Luis and L L Sdnchez-Soto 

(3.9) 

where PA is the projector onto the subspace 71,. If we translate (3.9) t o  the !.)leA) 
basis, we have just the first expression in (2.9). We can see that Z evolves with 
frequency n, but can not be unitarily equivalent to Q,  because it is not an irreducible 
representation of (3.1) in 71. 

4. Non-classical states of light 

The example presented above is very simple. However this kind of identification of 
variables in phase space or the corresponding subspaces in the Hilbert space, can be 
useful not only in connection with canonical transformations, hut wit,h other problems. 

In quantum optics a proper definition of variables can be used for the definition 
of new classes of non-classical states of light or for the generalization of the ones 
previously introduced. 

As an example we can consider the multiphoton squeezed states [la]. They were 
introduced to overcome the difficulties that arise in the naive generalization of one- and 
tw-photon coherent states to higher photon orders. I t  is well known that coherent and 
squeezed states are generated through the action on the vacuum of unitary operators 
in the form of an exponential of polynomials quadratic in Q and Q' .  It  has been 
pointed out by Fisher el  a/ [I91 the impossibility of the generalization of this action 
to powers higher than two. However the simple one-photon coherent states have been 
generalized to n-photon states by means of the multiphoton operators defined in the 
previous section. 

The multiphoton squeezed states are defined as 

Their expression in the number basis is simply given by 
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Perhaps the most interesting property of these states is that their probability 
distribution functions are not Gaussian. They are not minimum uncertainty states 
(MUS), but present squeezing for K = 2. I t  is clear that these kind of states arise in 
processes involving k-photon interactions. 

We can express (4.1) not in 7f but in z@ V ,  by means of the operator U 

(4.3) 

This expression in the In)ler) basis shows that these states are nothing but coherent 
states for the and F variables. In the same way we could identify in these variables 
other states defined in terms of the multiphoton operators. 

Up to now the space V has only been used to index subspaces of 31. However it 
can be used t o  extend t o  the whole 7f the definition of states and operators made in 
finit+dimensional subspaces as occurs with the phase operator of Pegg and Barnett 
and the realizations of SU(2) in terms of bosonic operators, so widely used in quantum 
optics. 

Let us focus on the Holstein-Primakoff [20] realizations of the SU(2) algebra. 
The abstract commutation relations of SU(2) can he realized in terms of the bosonic 
operators  at, but restricted to a finite-dimensional subspace of H. If we take the 
(2u+ 1)-dimensional subspace spanned by the number states In), where n now ranges 
from 0 to 2u, the infinitesimal generators take the form: 

J-  = &LXi a 

J+ = at J26-;;r;E (4.4) 

J ,  = a‘a - U. 

I t  is easy to see that these definitions depend on - the finite-dimensional subspace 
chosen. We can use the previous isomorphism ‘?L H @ V to give another definition 
valid in the whole space. 

Any (20  + 1)-dimensional subspace of ‘?L is isomorphic to a subspace of 75 @ V of 
the form I$) @ V if the dimension of V is 2a+ 1. In particular, we can take I$) to be 
any number state in 75. 

If now V carries a n-dimensional representation of SU(2) (calling the infinitesimal 
generators j ,  the Casimir jz takes the value f (nz  - 1)) we can chose the basis ler) to 
be the eigenvectors of j , , that is, jzleA)-= [A - ( K  - 1)/2] l er ) .  

Translating these operators j from 31 @ V to H, we have for example for j -  

u + ( r  @ j - ) ~  = & Z i j I K n  + x - + XI. (4.5) 
n,A 

This definition splits ‘H in a sum of %-dimensional representations of SU(2), each 
one labelled by the multiboson number n. We recover the usual definition (4.4) taking 
n = 0 and K = 2u+ 1. 

or F (or, in much the same way to q t ,  or p y ) ,  ) J ,  (defined as J ,  = U’ (I @ j z )  U) to 
form a complete set of commuting o servab es 

We can see the above definition in the SU(2) case as complement,ary with the 
case of the multiphoton states. In the later V remains fixed while in the former this 
happens with z, that  is not involved in the definitions. 

This can be viewed as an example of the discussion after (3.7). We can add to 
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With the definitions made above, if we take K = 2 the operators a and a t  are 
mapped by U to the operators acting in % @ V 

In the same way the infinitesimal generators +(a t )* ,  $2 and :(.fa + a a t )  of SU(1, l )  
can be expressed as 

(4.7) 

As we can see the commutation relations do not involve the variable X and we can 
consider the operators in the diagonal in the right-hand side of the above relations 
acting not in but in 'H. In this way we obtain two realizations of the algebra different 
from the first one. 

The formalism of Pegg and Barnett [21], describing the phase properties of a single- 
mode field, deals with a finite-dimensional subspace of 'H. If we take its dimension to 
be K ,  this space is spanned by the number states In) with n = 0 , .  . . , K - 1. The phase 
states are defined as 

(4.8) 

Their properties becomes the expected properties for a well behaved phase state in 
the limit K - 00 (in the same way that occurs with the phase states of Susskind and 
Glogower El() =[I() when I(I - 1). In this finite-dimensional space it can be given 
a basis selecting an orthonormal subset of the states (4.8). Once a reference phase 
state, say IOo), has been chosen this basis is given by 

10m)=100+2sm/n) m = O ,  ..., K - 1 .  (4.9) 

Note that they can be obtained simply by the action of the ambiguity group (2.4) as 

10,) = V ( 4 P o ) .  (4.10) 

With this basis a Hermitian phase operat,or is constructed 

X - 1  

4 8  = w?J(O,l (4.11) 
m=O 
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which verifies some relations desirable for a description of phase. 
We can again take, in much the same way we did in the previous example, the 

space of definition of these states and operators t o  be V. In other words it is just to 
change In) by le,) in (4.8). Using the same notation for simplicity, the phase operator 

acting on the whole space %@ V that results from this definition is 

@e = I @ & .  (4.12) 

With this relation we can add to  ZtG an operator with physical meaning to give a 
complete set of commuting observables. The associated basis in 'H is 

I"!@,) = u+ln)l@m) (4.13) 

with 10,) defined previously but keeping in mind that the space where are defined is 

The original definition of the phase states (4.8) correspond to the states IO,@,). 
In the same way we can take the limit IE --+ 00. However the In,@,) basis can be 
used to describe states with properties between the number and the phase states. 

.I 
V .  

5. Conclusions 

The proposal of enlarging the Hilbert space in order to recover the unitarity of the 
transformation relating two Hamiltonians of different spectra seems to introduce spuri- 
ous degrees of freedom (ambiguity spin). We have shown that with a proper definition 
of variables in phase space that have a clear counterpart in quantum mechanics, this 

malism. 
In this framework multiphoton squeezed states have a clearer interpretation and 

appear to give a way to  generalize and define non-classical states of light. The work of 
Moshinsky and co-workers on the representations in quantum mechanics of arbitrary 
canonical transformations supplies the theoretical tool for the problem. If we remem- 
ber the importance of the linear case, the relevance of the subject is clear and could 
become a powerful tool for many problems in quantum optics. 
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